
Natural convection flow due to a heat source in a
vertical channel

F.J. Higuera *, Yu.S. Ryazantsev

E.T.S. Ingenieros Aeron�aauticos Pza., Cardenal Cisneros 3, 28040 Madrid, Spain

Received 25 July 2000

Abstract

An analysis is presented of the laminar natural convection flow due to a localized heat source on the centerline of a

long vertical channel or pipe whose walls are kept at a constant temperature. Stationary solutions are obtained for

infinitely long and finite length channels, the asymptotic limit of infinite Rayleigh numbers is discussed, and an optimal

height of the channel is found leading to maximum mass flux and minimum temperature for a given heat release

rate. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Natural convection in vertical channels and tubes has

been studied extensively because of its interest in many

practical systems, including cooling of electronic equip-

ment [1,2], chimneys and furnaces, heat exchangers and

solar energy collectors, nuclear engineering, and geo-

physical flows. Early experiments were carried out by

Elenbaas [3] and Ostroumov [4], and later by Sparrow

and Bahrami [5], for isothermal tubes and plates heated

at temperatures above the ambient temperature. Bodoia

andOsterle [6] analyzed the flow in a vertical channel with

uniform wall temperature; Engel and Mueller [7] applied

an integral method to channels of finite height with uni-

formwall temperature or uniform surface heat flux; Aung

et al. [8,9], and later Sparrow et al. [10] andWebb andHill

[11], investigated cases with asymmetric wall conditions.

A review can be seen in Gebhart et al. [12].

The ‘‘chimney’’ effect, or enhancement of natural

convection heat transfer by confinement, has been

quantified by Marsters [13] for horizontal cylinders

confined by unheated vertical walls, and by Sparrow

et al. [14] for horizontal finned tubes. In experiments

with horizontal isothermal cylinders between vertical

adiabatic plates, Karim et al. [15] found that the Nusselt

number increases monotonically with the ratio of cyl-

inder diameter to plate spacing, a result advanced by

Sparrow and Pfeil [16]. Naylor and Tarasuk [17] studied

numerically and experimentally the air flow induced

around a vertical plate on the centerline of a channel

whose walls are heated at the same temperature as the

plate, obtaining values of the Nusselt number up to

twice as large as for a plate in open space. Konka [18]

presented flow visualizations and numerical computa-

tions for a heated horizontal cylinder in a vertical

channel with its two walls kept at different temperatures.

In this paper, a related configuration is analyzed in

which the vertical walls are at the ambient temperature

of the fluid outside the channel and the flow is generated

by a continuous supply of heat around a point on the

centerline. The work is aimed at describing the laminar

flow and the heat loss to the vertical walls at high values

of the Rayleigh number, and at determining the mass

flux in the channel as a function of its height. For the

present purposes, the heat is supposed to enter directly

the fluid, without an intervening solid body. In principle

this would require a special device, such as focusing

radiation on a region of the fluid. In practice the results

that follow should be applicable when the heat is re-

leased by a body provided that its size is small compared

with the width of the channel (see [19,20]) or that the

drag of the body in the natural convection flow induced

in the channel is small compared with the resistance of

the channel walls. In either case, a separate analysis of

the flow around the body is necessary to determine the

Nusselt number.
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2. Formulation

Consider the planar or axisymmetric laminar natural

convection flow induced by a two- or three-dimensional

localized heat source of strength Q on the centerline of a

long vertical channel or pipe of width or diameter 2a
whose walls are kept at a constant temperature T0
(ambient). A convenient temperature scale is

DT ¼ Q=kaj, where k is the thermal conductivity of the

fluid and j ¼ 0; 1 for planar or axisymmetric flow, re-

spectively. In the Boussinesq approximation, the non-

dimensional equations governing the flow are:

$ � v ¼ 0; ð1Þ

Ra
Pr

v � $v ¼ �$p þ hi þr2v; ð2Þ

Rav � $h ¼ r2h; ð3Þ

where h ¼ ðT � T0Þ=DT is the reduced temperature, the

variables ðx;v; pÞ are non-dimensionalized with the

factors ða; gbDTa2=m; gbDTaÞ, and Ra ¼ gbDTa3=am and

Pr ¼ m=a are the Rayleigh and Prandtl numbers. Here g

is the acceleration of gravity (i is a unit vector pointing

upwards) and b, m and a are the coefficient of thermal

expansion, the kinematic viscosity and the thermal dif-

fusivity of the fluid.

In the case of an infinitely long channel, all the

heat released by the source is lost to the isothermal

walls. The region of warm fluid around the source has

a finite length and the buoyancy force acting on the

fluid in this region cannot induce a through flow in

the channel. Boundary conditions appropriate for this

case are:

y ¼ 0 :
ou=oy ¼ v ¼ 0;
�yjoh=oy ¼ qðxÞ ¼ r�1 exp½�ðx=rÞ2	;

�
ð4Þ

y ¼ 1 : u ¼ v ¼ h ¼ 0; ð5Þ

x ! �1 : u ¼ v ¼ h ¼ 0; ð6Þ

where x and y are distances along the centerline and

normal thereto, and u and v are the corresponding

components of the velocity. Hereafter the distribution

of the heat flux entering the fluid is modeled as a

Gaussian of adjustable width r. The results on the

scale of the channel are insensitive to this model pro-

vided r is small. The modification of (6) needed to

account for channels of finite length will be discussed

below; see (13).

3. Infinitely long channel

For the numerical treatment, Eqs. (1) and (2) were

rewritten in terms of the stream function and the vor-

ticity, then (1)–(3) were discretized using finite differ-

ences, and solved with boundary conditions (4)–(6) by

means of a standard pseudotransient method. A sample

numerical solution of (1)–(6) is given in Fig. 1. The flow

starts as a plume immediately above the heat source,

opens up to fill the channel and lose heat by conduction

to the walls, and recirculates at a finite height above the

source. The total length of the flow increases with Ra
and depends very little on r. Asymptotically, for large

values of Ra and Pr ¼ Oð1Þ or large, the characteristic

length xc of the region above the source where viscous

forces and heat conduction extend to the whole channel

cross-section, as well as the characteristic velocity uc and
temperature hc of the fluid in this region, can be esti-

mated from the balance of buoyancy force and viscous

force in (2): hc ¼ uc; the balance of convection and lat-

eral conduction in (3): Rauchc=xc ¼ hc; and the global

energy balance �
R1
�1ðoh=oyÞ1 dx ¼

R1
�1 qðxÞdx ¼ 2

ffiffiffi
p

p

(from (3)–(6)), which amounts to hcxc ¼ 1. All these re-

lations are order of magnitude balances; equality signs

are used because the variables with subscript c are al-

ready characteristic values of the original variables. The

three conditions above yield xc ¼ Ra1=2 and uc ¼ hc ¼
Ra�1=2.

Fig. 1. Isotherms (left) and streamlines (right) for planar flow

with Ra ¼ 104, Pr ¼ 1 and r ¼ 0:1. Also plotted are the profiles

of temperature (left) and velocity (right) along the centerline.
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In order to check these estimates, the vertical extent

of the flow xmax, defined as the largest value of x for

which hP ehmax, where hmax is the maximum value of h
in the flow field and e ¼ 10�2, as well as the maximum

value of the stream function w (defined in the usual way

with w ¼ 0 on the centerline) are given in Fig. 2 as

functions of the Rayleigh number. The dotted lines in

this logarithmic plot have the slopes predicted by the

asymptotic estimates.

Rescaling x, u and h with xc, uc and hc, and v and p

with uc=xc ¼ Ra�1 and Rau2c ¼ 1, respectively, and then

letting Ra ! 1, Eqs. (2) and (3) take the boundary layer

form

1

Pr
evv � $euu ¼ � depp

dexx þ ehh þr2
T euu; ð7Þ

evv � $ehh ¼ r2
T
ehh; ð8Þ

where tildes denote rescaled variables, epp ¼ eppðexxÞ only,

and r2
T ¼ y�jo=oyðyjo=oyÞ.

The velocity and temperature profiles in Fig. 1 sug-

gest that the flow ends at a finite exx ¼ exxeðPrÞ, with the

solution being locally of the formeuu ¼ ðexxe � exxÞU1ðyÞ; evv ¼ V1ðyÞ;

Depp ¼ � 1

2
ðexxe � exxÞ2P1; ~hh ¼ ðexxe � exxÞH1ðyÞ:

ð9Þ

Carrying these variables into the governing equations

one is led to

� U1 þ y�jðyjV1Þ0 ¼ 0;

1

Pr
ð�U 2

1 þ V1U 0
1Þ ¼ �P1 þ H1 þr2

TU1;

� U1H1 þ V1H
0
1 ¼ r2

TH1;

y ¼ 0 : U 0
1 ¼ V1 ¼ H0

1 ¼ 0;

y ¼ 1 : U1 ¼ V1 ¼ H1 ¼ 0;

ð10Þ

where primes denote derivatives with respect to y. The

solution of (10), computed with a shooting and rescaling

method, is summarized in Fig. 3 in terms of the Prandtl

number. The profiles of U1ðyÞ and H1ðyÞ are given in

Fig. 4 for Pr ¼ 1.

Near the heat source, for exx � 1, the flow consists of a

self-similar planar or axisymmetric laminar plume,

whose solution is well known [21], and an outer recir-

culating flow which is cool and weak and apparently

induced by the entrainment of the plume. The nature of

this latter flow is different in the planar and axisym-

metric cases. In the second case, which is simpler, the

plume amounts to a line of sinks of uniform strength

extending from exx ¼ 0 upwards, which in the boundary

layer approximation discussed above leads to an outer

flow

euu ¼ exxPrU0ðyÞ; evv ¼ PrV0ðyÞ; Depp ¼ 1

2
exx2PrP0 ð11Þ

with (using again primes to denote y-derivatives)

U0 þ y�jðyjV0Þ0 ¼ 0;

U 2
0 þ V0U 0

0 ¼ �P0 þr2
TU0;

y ¼ 0 : V0 � �/
y
; U 0

0 ¼ 0;

y ¼ 1 : U0 ¼ V0 ¼ 0;

ð12Þ

Fig. 2. Vertical extent of the flow (xmax, squares, left-side scale)

and maximum stream function (wmax, circles, right-side scale) as

functions of Ra for planar flow with Pr ¼ 1.

Fig. 3. Scaled pressure (P1) and centerline velocity [U1ð0Þ],
from the solution of (10), as functions of the Prandtl number.

Solid curves are for planar flow (j ¼ 0) and dashed curves for

axisymmetric flow (j ¼ 1). Dotted lines are asymptotic values

for Pr ! 1.

F.J. Higuera, Yu.S. Ryazantsev / International Journal of Heat and Mass Transfer 45 (2002) 2207–2212 2209



where 2p/ðPrÞ is the entrainment rate of the plume,

which is well known from the analysis of its internal

structure. The solution of this problem, computed with a

shooting method, is represented in Fig. 5 as a function of

/. The linear variation of the vertical velocity with exx
implies that convection and viscous forces remain of the

same order down to exx ¼ 0. This feature of the axisym-

metric configuration was first noticed by Revuelta et al.

[22] for a related problem.

In the planar case, the mass flux carried by the plume

is proportional to exx3=5, requiring a vertical downward

velocity of this same order outside the plume. Then, in

this outer region, convection, of Oðexx1=5Þ, dominates

viscous forces, of Oðexx3=5Þ, when exx � 1, except in

boundary layers of thickness proportional to exx1=5
around the walls. The vorticity is of order exx2=5 in these

boundary layers, and should be at most of order exx3=5 in
the inviscid flow. The actual distributions of vorticity

and temperature, however, are to be determined from

the solution for exx ¼ Oð1Þ, where viscosity and heat

conduction matter and the flow of interest occupies

narrow layers by the walls. As far as the limiting Eqs.

(1), (7) and (8) are concerned, the only information

needed about the region exx � 1 is the velocity and tem-

perature in the plume and, if some fluid recirculates

without being ingested by the plume, the conditions that

the temperature and the velocity are the same, on each

streamline, before and after the fluid turns around.

4. Channels of finite length

Having discussed the flow in an infinitely long

channel, we turn now to the case of channels of finite

height. If the height H of the channel, scaled with a, is

large compared with xc ¼ Ra1=2, then the pressure vari-

ation induced by buoyancy in the warm fluid,

Dp ¼ OðhcxcÞ ¼ Oð1Þ, from (2), leads to a Poiseuille flow

u ¼ Uð1� y2Þ with U ¼ OðDp=HÞ ¼ Oðucxc=HÞ � uc in
the rest of the channel. This is because the non-dimen-

sional adaptation length RaU (cf. (2)) is small compared

with H when H � xc. Though this through flow is too

weak to affect the bulk of the warm region, it can still

modify the conditions around the heat source and de-

crease the maximum temperature for a given heat release

(or Ra). Thus, in the planar case, using standard esti-

mates recast in terms of the present variables, the tem-

perature of the plume at a distance l from the source, or

the temperature of a warm body of characteristic length

l, would decrease from hp ¼ OðRa�1=5l�3=5Þ to

hp0 ¼ OðRaUlÞ�1=2
when l � l0 ¼ U 5Ra3, and a plume

with u ¼ OðRa�3=5l1=5Þ emerges and dominates the flow

above this distance. On top of the warm region the ve-

locity takes the parabolic form u ¼ Uð1� y2Þ and the

temperature decays exponentially: h ¼ H2 expð�kxÞ,
with k an eigenvalue. The energy Eq. (3) becomes

r2
TH2 þ kURað1� y2ÞH2 ¼ 0 at the upper reaches of the

warm region, which with H0
2ð0Þ ¼ H2ð1Þ ¼ 0 gives

kU Ra � 2:828 in the planar case and kU Ra � 7:314 in

the axisymmetric case.

The value of U increases and the maximum temper-

ature decreases with decreasing H, until U becomes of

order uc ¼ Ra�1=2 when H ¼ OðRa1=2Þ. The flow in this

Fig. 5. Scaled centerline velocity (U0ð0Þ; solid), shear stress at
the wall (U 0

0ð1Þ; dashed) and pressure (P0; dotted), from the

solution of (12), as functions of /.

Fig. 4. Scaled temperature (left-side scale) and velocity (right-

side scale) from the solution of (10) for Pr ¼ 1. Solid curves are

for planar flow (j ¼ 0) and dashed curves for axisymmetric flow

(j ¼ 1).
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regime, in which there is no room for a Poiseuille flow to

develop in the channel, is described by the boundary

layer Eqs. (1), (7) and (8) and the boundary conditions

(4) and (5), while (6) should be replaced by

exx ¼ �exxin : euu ¼ eUU ; ~hh ¼ epp þ 1

2Pr
eUU 2 ¼ 0 ð13Þ

assuming that there are no losses of total pressure at

the inlet. Here exxin is the distance from the inlet of

the channel to the heat source scaled with aRa1=2 and

the uniform (rescaled) inlet velocity eUU should be such

that epp ¼ 0 at the outlet exx ¼ eHH � exxin, where eHH ¼ H=
Ra1=2.

Finally, when H is small compared with xc the

plume does not fill the channel cross-section and most

of the heat is convected away from the channel. The

velocity induced around the source by the entrainment

of the plume is of the order of the non-dimensional

mass flux in the plume, which is U ¼ OðH 3=5=Ra4=5Þ in

the planar case and U ¼ OðH=RaÞ in the axisymmetric

case. This velocity increases with H which, along with

the previous estimates for tall channels, suggests that

there is an optimal height H ¼ OðRa1=2Þ leading to

maximum U and minimum temperature at the heat

source. This conjecture was checked by solving the

boundary layer problem for exxin � 1, in which case, for

planar flow

~hh ¼ 1

ð eUUexxinÞ1=2 exp

 
�
eUUy2

4exxin
!

at the inlet, immediately behind the heat source. The

values of eUU computed numerically for different eHH are

given in Table 1 for Pr ¼ 1. A maximum eUU � 0:509
occurs for eHH � 0:25.

5. Conclusions

The natural convection flow induced by a localized

heat source on the centerline of a vertical channel or

pipe with walls at ambient temperature has been inves-

tigated numerically and asymptotically. Numerical so-

lutions have been computed for an infinitely long

channel and used to validate the asymptotic scaling for

large values of a Rayleigh number based on the channel

width. Simplified boundary layer equations have been

written on the basis of this scaling. The vertical extent of

the flow is found to be finite, and the limiting forms of

the solution around the upper and lower ends have been

computed. Estimates of the induced mass flux have been

worked out for channels of length large and small

compared with the extent of the warm region in an in-

finitely long channel. These estimates suggest, and nu-

merical solution of the limiting boundary layer

equations confirm, that an optimal channel length exists

leading to maximum mass flux for a given heat release or

Rayleigh number.
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